4.4 Article

Species-specific response to climate reconstruction in upper-elevation mixed-conifer forests of the western Sierra Nevada, California

期刊

CANADIAN JOURNAL OF FOREST RESEARCH
卷 37, 期 9, 页码 1681-1691

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/X07-028

关键词

-

类别

向作者/读者索取更多资源

Dendrochronology climate reconstruction studies often sample dominant, open-grown trees to reduce competition effects and isolate annual climate influences on radial increment growth. However, there has been no examination of how species respond as stand densities increase or which species in mixed-conifer forests provide a better record of past climate. We sampled 579 trees representing five upper montane mixed-conifer species at the Teakettle Experimental Forest in California's southern Sierra Nevada to determine species-specific responses to annual climatic fluctuations. Using the Kalman filter, we examined the affect of local stand density on growth response and whether the growth-climate relationship improved with a time lag. The Kalman filter iteratively calculates error for predicted versus actual radial growth and accounts for this variation in the corrector equation. Under current high-density conditions, shade-tolerant white fir (Abies concolor (Gord. & Glend.) Lindl.) provided the best model for climate reconstruction. Shade-intolerant Jeffrey pine (Pinus jeffreyi Grev. & Balf.) had a lagged response to annual climatic fluctuations, possibly because its roots may tap water reserves in granitic bedrock fissures. Open-grown trees provided more accurate records of climate. Changes in forest density in this forest may have resulted in changes in species-specific response to annual climatic fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据