4.5 Article

Potential vulnerability of Namaqualand plant diversity to anthropogenic climate change

期刊

JOURNAL OF ARID ENVIRONMENTS
卷 70, 期 4, 页码 615-628

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jaridenv.2006.11.020

关键词

drought; tolerance limits; bioclimatic modelling; desert; range shifts

向作者/读者索取更多资源

We provide a position paper, using a brief literature review and some new modelling results for a subset of succulent plant species, which explores why Namaqualand plant diversity might be particularly vulnerable to anthropogenic climate change despite presumed species resilience under arid conditions, and therefore a globally important test-bed for adaptive conservation strategies. The Pleistocene climate-related evolutionary history of this region in particular may predispose Namaqualand (and Succulent Karoo) plant endemics to projected climate change impacts. Key Succulent Karoo plant lineages originated during cool Pleistocene times, and projected air temperatures under anthropogenic climate change are likely to exceed these significantly. Projected rainfall patterns are less certain, and projections of the future prevalence of coastal fog are lacking, but if either of these water inputs is reduced in concert with rising temperatures, this seems certain to threaten the persistence of, at least, narrow-endemic plant species. Simple modelling approaches show strong reduction in spatial extent of bioclimates typical of Namaqualand within the next five decades and that both generalist species with large geographic ranges, and narrow-range endemics may be susceptible to climate change induced loss of potential range. Persistence of endemics in micro-habitats that are buffered from extreme climate conditions cannot be discounted, though no attempts have been made to address this shortcoming of broader scale bioclimatic modelling. The few experimental data available on elevated temperature and drought tolerance suggest susceptibility of leaf succulent species, but high drought tolerance of non-succulent shrubs. Both species-level monitoring and further experimental work is essential to test and refine projections of climate change impacts on species persistence, and the implications for conservation. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据