4.7 Article

Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources

期刊

ENERGY
卷 32, 期 9, 页码 1698-1706

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2007.01.005

关键词

Organic Rankine cycle; optimum design; low-temperature; power generation; geothermal heat sources

向作者/读者索取更多资源

A cost-effective optimum design criterion for Organic Rankine power cycles utilizing low-temperature geothermal heat sources is presented. The ratio of the total heat exchanger area to net power output is used as the objective function and was optimized using the steepest descent method. Evaporation and condensation temperatures, geothermal and cooling water velocities are varied in the optimization method. The optimum cycle performance is evaluated and compared for working fluids that include ammonia, HCFC123, n-Pentane and PF5050. The optimization method converges to a unique solution for specific values of evaporation and condensation temperatures and geothermal and cooling water velocities. The choice of working fluid can be greatly affect the objective function which is a measure of power plant cost and in some instances the difference could be more than twice. Ammonia has minimum objective function and maximum geothermal water utilization, but not necessarily maximum cycle efficiency. Exergy analysis shows that efficiency of the ammonia cycle has been largely compromised in the optimization process than that of other working fluids. The fluids, HCFC 123 and n-Pentane, have better performance than PF 5050, although the latter has most preferable physical and chemical characteristics compared to other fluids considered. (c) 2007 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据