4.6 Article

A microfluidic approach for measuring capillary pressure in PEMFC gas diffusion layers

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 9, 期 9, 页码 2340-2345

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.elecom.2007.06.042

关键词

capillary pressure; multiphase; fuel cell; gas diffusion layer; hysteresis

向作者/读者索取更多资源

A dearth of experimental capillary pressure data limits our understanding and optimization of liquid water transport in PEMFC gas diffusion layers (GDLs). A microfluidic device and method is described for measuring the capillary pressure as a function of liquid water saturation for these thin porous materials with complex, heterogeneous wetting properties. A sample sandwich (hydrophilic membrane GDL-hydrophobic membrane) is key for probing the entire hydrophilic and hydrophobic pore volume of the GDL during sequential liquid intrusion and gas intrusion experiments. The capillary pressure curves for an as-purchased Toray 090 and two differentially-processed Avcarb P75T GDLs were evaluated; each material displayed highly repeatable, but quantitatively different, room temperature capillary pressure curves that matched qualitative differences in their macroscopic wettability. The measurements show that hysteresis between the liquid intrusion and gas intrusion curves is significant. For example, both the Toray and fully wet-proofed Avcarb GDLs appear hydrophobic during most of the liquid intrusion curve and hydrophilic during most of the gas intrusion curve. The implications of this work for water management, and future device designs and experiments are described. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据