4.6 Article

Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial

期刊

GEOPHYSICS
卷 72, 期 5, 页码 SM223-SM230

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.2753753

关键词

-

向作者/读者索取更多资源

We present a set of methods for modeling wavefields in three dimensions with the acoustic-wave equation. The primary applications of these modeling methods are the study of acquisition design, multiple suppression, and subsalt imaging for surface-streamer and ocean-bottom recording geometries. We show how to model the acoustic wave equation in three dimensions using limited computer memory, typically using a single workstation, leading to run times on the order of a few CPU hours to a CPU day. The structure of the out-of-core method presented is also used to improve the efficiency of in-core modeling, where memory-to-cache-to-memory data flow is essentially the same as the data flow for an out-of-core method. Starting from the elastic-wave equation, we develop a vector-acoustic algorithm capable of efficiently modeling multicomponent data in an acoustic medium. We show that data from this vector-acoustic algorithm can be used to test upgoing/downgoing separation of P-waves recorded by ocean-bottom seismic acquisition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据