4.6 Article

Energetics of interlayer binding in graphite: The semiempirical approach revisited

期刊

PHYSICAL REVIEW B
卷 76, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.115424

关键词

-

向作者/读者索取更多资源

We have developed a semiempirical method to obtain interlayer binding energy of graphite in the previous work [M. Hasegawa and K. Nishidate, Phys. Rev. B 70, 205431 (2004)]. In the present paper, we revisit this approach and develop an improved method, in which ab initio calculations based on the density functional theory (DFT) are also corrected through an empirical atom-atom van der Waals (vdW) interaction. The local density approximation (LDA) and generalized gradient approximation (GGA) are used in the DFT calculations. The parametrized damping function introduced to modify the asymptotic atom-atom vdW interaction is more flexible than the previous ones and covers a wider range of possibility in correcting for the approximate DFT calculations. The damping function is determined empirically by imposing the condition that the experimental interlayer spacing, in-plane lattice constant, and c-axis elastic constant are reproduced. We also require consistency between the LDA- and GGA-based methods (LDA+vdW, GGA+vdW) as the theoretically motivated necessary condition. The interlayer binding energy obtained by this method is 60.4 meV/atom at T=0 K. The result of similar to 54 meV/atom at room temperature corrected by the thermal effect is consistent with the most recent experiment, 52 +/- 5 eV/atom [R. Zacharia , Phys. Rev. B 69, 155406 (2004)]. The atom-atom vdW interaction obtained by the present semiempirical method favorably corrects for the overbinding and underbinding nature of the LDA and GGA, respectively, in the in-plane energetics of graphite. That interaction also provides a useful starting point for the studies of energetics of other graphitic systems such as fullerenes and carbon nanotubes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据