4.7 Article

Investigating the andromeda stream - III. A young shell system in m31

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/J.1365-2966.2007.11929.X

关键词

galaxies : individual; M31; galaxies : interactions; galaxies : kinematics and dynamics

向作者/读者索取更多资源

Published maps of red giant stars in the halo region of M31 exhibit a giant stellar stream to the south of this galaxy, as well as a giant 'shelf' to the northeast of M31's centre. Using these maps, we find that there is a fainter shelf of comparable size on the western side as well. By choosing appropriate structural and orbital parameters for an accreting dwarf satellite within the accurate M31 potential model of Geehan et al., we produce a very similar structure in an N-body simulation. In this scenario, the tidal stream produced at pericentre of the satellite's orbit matches the observed southern stream, while the forward continuation of this tidal stream makes up two orbital loops, broadened into fan-like structures by successive pericentric passages; these loops correspond to the north-eastern and western shelves. The tidal debris from the satellite also reproduces a previously observed 'stream' of counterrotating planetary nebulae and a related stream seen in red giant stars. The debris pattern in our simulation resembles the shell systems detected around many elliptical galaxies, though this is the first identification of a shell system in a spiral galaxy and the first in any galaxy close enough to allow measurements of stellar velocities and relative distances. We discuss the physics of these partial shells, highlighting the role played by spatial and velocity caustics in the observations. We show that kinematic surveys of the tidal debris will provide a sensitive measurement of M31's halo potential, while quantifying the surface density of debris in the shelves will let us reconstruct the original mass and time of disruption of the progenitor satellite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据