4.4 Article

Stereology meets electron tomography Towards quantitative 3D electron microscopy

期刊

JOURNAL OF STRUCTURAL BIOLOGY
卷 159, 期 3, 页码 443-450

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2007.05.003

关键词

stereology; electron tomography; quantification; depth of field; overprojection; disector; cavalieri principle; transmission electron microscopy

向作者/读者索取更多资源

Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists. This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2-5 nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method. Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据