4.3 Article

Redox properties and evolution of human glutaredoxins

期刊

出版社

WILEY
DOI: 10.1002/prot.21416

关键词

redox potential; C-X-X-C motif; disulfide; phylogenetic analysis; thermodynamic cycle; conformational stability; circular dichroism spectroscopy

向作者/读者索取更多资源

Glutaredoxins (Grxs) are glutathione-dependent oxidoreductases that belong to the thioredoxin superfamily catalyzing thiol-disulfide exchange reactions via active site cysteine residues. Focusing on the human dithiol glutaredoxins having a C-X-Y-C active site sequence motif, the redox potentials of hGrxl and hGrx2 were determined to be -232 and -221 mV, respectively, using a combination of redox buffers, protein-protein equilibrium and thermodynamic linkage. In addition, a nonactive site disulfide was identified between Cys28 and Cys.113 in hGrx2 using redox buffers and chemical digestion. This disulfide confers nearly five kcal mol-1 additional stability by linking the C-terminal helix to the bulk of the protein. The redox potential of this nonactive site disulfide was determined to be -317 mVand is thus expected to be present in all but the most reducing conditions in vivo. As all human glutaredoxins contain additional nonactive site cysteine residues, a full phylogenetic analysis was performed to help elucidate their structural and functional roles. Three distinct groups were found: Grx1, Grx2, and Grx5, the latter representing a highly conserved group of monothiol glutaredoxins having a C-G-F-S active site sequence, with clear homologs from bacteria to human. Grx1 and Grx2 diverged from a common ancestor before the origin vertebrates, possibly even earlier in animal evolution. The highly stabilizing nonactive site disulfide observed in hGrx2 is found to be a conserved feature within the deuterostomes and appears to be the only additional conserved intramolecular disulfide within the glutaredoxins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据