4.7 Article

Development of an aminocarboxylic acid-modified infrared chemical sensor for selective determination of tyrosine in urine

期刊

ANALYTICA CHIMICA ACTA
卷 606, 期 2, 页码 230-238

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2007.11.016

关键词

infrared; optical sensor; evanescent wave; amino acids; tyrosine

向作者/读者索取更多资源

An infrared (IR) chemical sensor based on immobilization of an acidified tris(2-aminoethyl)amine (ATAA) for the detection of tyrosine in urine is described. The sensing phase (i.e., coating) was saturated with nickel ions so that it would interact with tyrosine molecules in aqueous solution through the formation of stable ATAA-Ni2+-tyrosine complexes. Investigation of the signals of nine amino acids shows that only the three containing phenyl groups could be detected by this sensor system. A unique spectral feature located at 1515 cm(-1) allowed tyrosine to be discriminated from the other two amino acids. To examine the performance of the ATAA sensing phase in the quantitative analysis of tyrosine, the effects of several factors were examined. pH affected the ability of tyrosine to form complexes; the optimal signal occurred at ca. pH 8. The concentration of ammonia buffer also affected the analytical signals through a competition effect; lower concentrations of ammonia buffer provided higher intensity signals. It was found that nickel ions are the most useful for detection of tyrosine. Although the concentration of nickel ions had less influence on the analytical signal than did the concentration of the ammonia buffer, the signal intensity was optimal when the nickel ions and the target molecule had similar concentrations. The detected time profiles indicated that the ATAA sensor phase functioned via a surface adsorption mechanism. The linear range of signal intensities was up to 600 mu M with a detection limit of 30 mu M. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据