4.7 Article

Snell's law of refraction observed in thermal frontal polymerization

期刊

CHAOS
卷 17, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2784386

关键词

-

向作者/读者索取更多资源

We demonstrate that Snell's law of refraction can be applied to thermal fronts propagating through a boundary between regions that support distinct frontal velocities. We use the free-radical frontal polymerization of a triacrylate with clay filler that allows for two domains containing two different concentrations of a peroxide initiator to be molded together. Because the polymerization reaction rates depend on the initiator concentration, the propagation speed is different in each domain. We study fronts propagating in two parallel strips in which the incident angle is 90 degrees. Our data fit Snell's law v(r)/v(i)=sin theta(r)/sin theta(i), where v(r) is the refracted velocity, v(i) is the incident velocity, theta(r) is the angle of refraction, and theta(i) is the incident angle. Further, we study circular fronts propagating radially from an initiation point in a high-velocity region into a low-velocity region (and vice versa). We demonstrate the close resemblance between the numerically simulated and experimentally observed thermal reaction fronts. By measuring the normal velocity and the angle of refraction of both simulated and experimental fronts, we establish that Snell's law holds for thermal frontal polymerization in our experimental system. Finally we discuss the regimes in which Snell's law may not be valid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据