4.0 Article

Biological denitrification of reverse osmosis brine concentrates: I. Batch reactor and chemostat studies

期刊

出版社

ICE PUBLISHING
DOI: 10.1139/S07-021

关键词

reverse osmosis; nitrification; denitrification; brine concentrate; batch reactor; chemostat; fluidized bed adsorber reactor; granular activated carbon; sand; sulfate reduction

向作者/读者索取更多资源

A major technological concern with reverse osmosis in water purification, wastewater treatment, and water reclamation or recycling is the production of brine concentrates high in ammonia or nitrogen. This project addresses biological denitrification of reverse osmosis brine concentrates in a bioactive fluidized bed adsorber reactor (FBAR), accomplished in four stages. The first three stages are described in this paper, while the final stage is addressed in the companion paper (Ersever et al. 2007). The first stage optimized an FBAR to produce nitrified brine for subsequent denitrification studies. The second stage employed batch reactors to evaluate denitrification parameters such as temperature, pH, total dissolved solids, and carbon-to-nitrogen ratio. The specific denitrification rate was maximum at a temperature of 35 degrees C, pH of 8.0, and carbon-to-nitrogen ratio of 1.8. The third stage involved chemostats to determine Monod parameters under nitrate-, nitrite-, and carbon-limiting conditions. A biokinetic model was employed to simulate chemostat dynamics and to estimate the biological parameters. The final stage entailed FBAR denitrification experiments under different hydraulic retention times, nitrate concentrations, and packing media; simultaneous denitrification and sulfate reduction were addressed. A second FBAR used in series with the first achieved an overall sulfate reduction of 99%, and a biofilter effectively removed the hydrogen sulfide generated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据