4.5 Article

Estimating sparse spectro-temporal receptive fields with natural stimuli

期刊

NETWORK-COMPUTATION IN NEURAL SYSTEMS
卷 18, 期 3, 页码 191-212

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/09548980701609235

关键词

auditory cortex; speech; reverse correlation; boosting

资金

  1. NIDCD NIH HHS [R01 DC005779, F32 DC008453] Funding Source: Medline

向作者/读者索取更多资源

Several algorithms have been proposed to characterize the spectro-temporal tuning properties of auditory neurons during the presentation of natural stimuli. Algorithms designed to work at realistic signal-to-noise levels must make some prior assumptions about tuning in order to produce accurate fits, and these priors can introduce bias into estimates of tuning. We compare a new, computationally efficient algorithm for estimating tuning properties, boosting, to a more commonly used algorithm, normalized reverse correlation. These algorithms employ the same functional model and cost function, differing only in their priors. We use both algorithms to estimate spectro-temp oral tuning properties of neurons in primary auditory cortex during the presentation of continuous human speech. Models estimated using either algorithm, have similar predictive power, although fits by boosting are slightly more accurate. More strikingly, neurons characterized with boosting appear tuned to narrower spectral bandwidths and higher temporal modulation rates than when characterized with normalized reverse correlation. These differences have little impact on responses to speech, which is spectrally broadband and modulated at low rates. However, we find that models estimated by boosting also predict responses to non-speech stimuli more accurately. These findings highlight the crucial role of priors in characterizing neuronal response properties with natural stimuli.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据