4.6 Article

Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction

期刊

PHYSICAL REVIEW B
卷 76, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.115423

关键词

-

向作者/读者索取更多资源

Scanning tunneling microscopy (STM) is one of the most appropriate techniques to investigate the atomic structure of carbon nanomaterials. However, the experimental identification of topological and nontopological modifications of the hexagonal network of sp(2) carbon nanostructures remains a great challenge. The goal of the present theoretical work is to predict the typical electronic features of a few defects that are likely to occur in sp(2) carbon nanostructures, such as atomic vacancy, divacancy, adatom, and Stone-Wales defect. The modifications induced by those defects in the electronic properties of the graphene sheet are investigated using first-principles calculations. In addition, computed constant-current STM images of these defects are calculated within a tight-binding approach in order to facilitate the interpretation of STM images of defected carbon nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据