4.6 Article

Dynamical thermal response functions for strongly correlated one-dimensional systems:: Hubbard and spinless fermion t-V model

期刊

PHYSICAL REVIEW B
卷 76, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.125110

关键词

-

向作者/读者索取更多资源

In this paper, we study the thermal response functions for two one-dimensional models, namely, the Hubbard and spinless fermion t-V model, respectively. By exactly diagonalizing finite sized systems, we calculate dynamical, electrical, thermoelectrical, and thermal conductivities via the Kubo formalism [J. Phys. Soc. Jpn. 12, 570 (1957)]. The thermopower (Seebeck coefficient), Lorenz number, and dimensionless figure of merit are then constructed, which are quantities of great interest to the physics community both theoretically and experimentally. We also geometrically frustrate these systems and destroy integrability by the inclusion of a second-neighbor hop in the kinetic energy operator. These frustrated systems are shown to have enhanced thermopower and Lorenz number at intermediate and low temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据