4.6 Article

Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model

期刊

PHYSICAL REVIEW B
卷 76, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.115123

关键词

-

向作者/读者索取更多资源

We present a theoretical study of the modifications of the radiative and nonradiative decay rates of an optical emitter in close proximity to a noble-metal nanosphere, based on exact electrodynamical theory. We show that the optimal nanosphere diameter for luminescence quantum efficiency enhancement associated with resonant coupling to plasmon modes is in the range of 30-110 nm, depending on the material properties. The optimal diameter is found to be a trade-off between (1) emitter-plasmon coupling, which is most effective for small spheres, and (2) the outcoupling of plasmons into radiation, which is most efficient for large spheres. In addition, we show that the well-known Gersten and Nitzan model does not describe the existence of a finite optimal diameter unless the model is extended with the correction factor for radiation damping. With this correction and a correction for dynamic depolarization, the mathematically simpler Gersten and Nitzan model provides a reasonably accurate approximation of the decay rate modifications associated with coupling to the dipole plasmon mode. We anticipate that the Gersten and Nitzan model in the form that we validate in this paper for spheres will allow the analytical investigation of the influence of shape anisotropy on plasmon-enhanced luminescence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据