4.3 Article

Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep

期刊

CARDIOVASCULAR PATHOLOGY
卷 16, 期 5, 页码 277-282

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.carpath.2007.03.008

关键词

cells; vascular wall healing; vascular remodeling; vascular graft; pulmonary artery; scaffold; tissue engineering; wound healing

向作者/读者索取更多资源

Purpose: We hypothesized that cell-seeded patches implanted into sheep pulmonary artery would undergo progressive and complete healing into a viable structure well integrated with the arterial wall. Methods: Autologous ovine blood-derived endothelial progenitor cells (EPCs) and bone marrow-derived mesenchymal stem cells (MSCs) were isolated and cultured in vitro. MSCs and EPCs were seeded onto poly-4-hydroxybutyrate (P4HB)-coated polyglycolic acid (PGA) nonwoven biodegradable mesh scaffolds (10x20 mm) and cultured for 5 days in a laminar fluid flow system. Seeded patches were implanted into the wall of sheep pulmonary artery for 1-2 weeks (n=4) or 4-6 weeks (n=3). Preimplant and postexplant specimens were analyzed by histology and immunohistochermstry. Results: Unimplanted constructs contained alpha-smooth muscle actin (SMA)-positive cells and early extracellular matrix formation (primarily glycosaminoglycans). One week after implantation, seeded patches had surface thrombus formation and macrophage infiltration. Seeded patches implanted for 2 weeks showed granulation tissue, early pannus formation, macrophages, foreign body giant cells around disintegrating polymer, and early angiogenesis (microvessel formation). After 4 weeks in vivo, seeded patches contained glycosaminoglycans, collagen, and coverage of the luminal surface by host artery-derived pannus containing alpha-SMA-positive cells and laminated elastin; polymer scaffold degradation was almost complete with replacement by fibrous tissue containing viable cells. Conclusions: This study shows that cell-seeded patches implanted in sheep pulmonary artery remodel to layered and viable tissue well integrated into the native arterial wall. The key remodeling processes included (1) intimal overgrowth at the luminal surface (pannus formation; neointima) and (2) granulation tissue formation and fibrosis with foreign body reaction. (C) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据