4.5 Article

Metal binding ability of glutathione transferases conserved between two animal species, the vanadium-rich ascidian Ascidia sydneiensis samea and the schistosome Schistosoma japonicum

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS
卷 1770, 期 9, 页码 1413-1418

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbagen.2007.05.007

关键词

glutathione transferase (GST); vanabin; metal selectivity; immobilized metal ion affinity chromatography (IMAC); ascidian; schistosome

向作者/读者索取更多资源

Glutathione transferases (GSTs) are multifunctional enzymes found in many organisms. We recently identified vanadium-binding GSTs, designated AsGSTs, from the vanadium-rich ascidian, Ascidia sydneiensis samea. In this study, the metal-selectivity of AsGST-I was investigated. Immobilized metal ion affinity chromatography (IMAC) analysis revealed that AsGST-I binds to V(IV), Fe(III), and Cu(II) with high affinity in the following order Cu(II)> V(IV)> Fe(III), and to Co(II), Ni(II), and Zn(II) with low affinity. The GST activity of AsGST-I was inhibited dose-dependently by not V(IV) but Cu(II). A competition experiment demonstrated that the binding of V(IV) to AsGST-I was not inhibited by Cu(II). These results suggest that AsGST-I has high V(IV)-selectivity, which can confer the specific vanadium accumulation of ascidians. Because there are few reports on the metal-binding ability of GSTs, we performed the same analysis on SjGST (GST from the schistosome, Schistosoma japonicum). SjGST also demonstrated metal-binding ability although the binding pattern differed from that of ASGST-I. The GST activity of SjGST was inhibited by Cu(II) only, as that of AsGST-I. Our results indicate a possibility that metal-binding abilities of GSTs are conserved among organisms, at least animals, which is suggestive of a new role for these enzymes in metal homeostasis or detoxification. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据