4.5 Article

Hippocampal gene expression profiling reveals the possible involvement of Homer1 and GABAB receptors in scopolamine-induced amnesia

期刊

JOURNAL OF NEUROCHEMISTRY
卷 102, 期 6, 页码 1978-1989

出版社

WILEY
DOI: 10.1111/j.1471-4159.2007.04666.x

关键词

GABA(B) receptor; gene expression; Homer1; memory; Morris water maze; scopolamine

向作者/读者索取更多资源

Scopolamine-treated rats are commonly used as a psychopharmacological model of memory dysfunction and have been extensively studied to establish the effectiveness of acetylcholinesterase inhibitors in the treatment of Alzheimer's disease. Scopolamine is a muscarinic acetylcholine receptor antagonist that induces memory deficits in young subjects similar to those occurring during aging. The amnesic effect of scopolamine is well established but the molecular and cellular mechanisms that sustain its neuropharmacological action are still unclear. The present genome wide study investigates hippocampal gene expression profiling in scopolamine-treated adult rats following stimulation in a spatial memory task. Using microarray and quantitative real-time RT-PCR approaches, we identified several genes previously known to be associated with memory processes (Homer1, GABA(B) receptor, early growth response 1, prodynorphin, VGF nerve growth factor inducible) and multiple novel candidate genes possibly involved in cognition (including calcium/calmodulin-dependent protein kinase kinase 2, dual specificity phosphatase 5 and 6, glycophorin C) that were altered following scopolamine treatment. Moreover, we found that stable over-expression of glutamatergic components Homer1a and 1c in the hippocampus of adult rats induced by recombinant adeno-associated virus vector abolished memory improvement produced by the GABA(B) receptor antagonist SGS742 in scopolamine-treated rats. Taken together, these results reveal novel genes and mechanisms involved in scopolamine-induced amnesia, and demonstrate the involvement of both GABA and glutamate neurotransmission in this animal model of cognitive dysfunctions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据