4.5 Article

Laterally resolved ion-distribution functions at the substrate position during magnetron sputtering of indium-tin oxide films

期刊

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
卷 25, 期 5, 页码 1341-1350

出版社

A V S AMER INST PHYSICS
DOI: 10.1116/1.2753843

关键词

-

向作者/读者索取更多资源

During the magnetron sputtering from an indium-tin oxide (ITO) target (76 mm diameter) we measured the ion-distribution functions (IDFs) of energetic ions (argon, indium, and oxygen ions) at the substrate surface using a combination of a quadrupole mass spectrometer and an electrostatic energy analyzer. We obtained the IDFs for argon sputtering pressures in the range from 0.08 to 2 Pa and for dc as well as rf (13.56 MHz) plasma excitation with powers from 10 to 100 W. The IDF measurements were performed both over the target center at a target-to-substrate distance of 65 mm and at different positions along the target radius in order to scan the erosion track of the target. The mean kinetic energies of argon ions calculated from the IDFs in the dc plasma decreased from about 30 to 15 eV, when the argon pressure increased from 0.08 to 2 Pa, which is caused by a decrease of the electron temperature also by a factor of 2. Indium atoms exhibit higher mean energies due to their additional energy from the sputtering process. The total metal ion flux turns out to be proportional to the discharge power and the pressure, the latter dependence being due to Penning ionization of the metal atoms (In and Sn). From the scans across the target surface the lateral distributions of metal, oxygen, and argon ions were derived. In the dc discharge the position of the erosion track is reproduced by increased ion intensities, while it is not the case for the rf excited plasma. The lateral variations of the observed species do not influence the lateral resistivity distributions of the deposited ITO films. (c) 2007 American Vacuum Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据