4.3 Article

Genotypic differences in sweet cherry fruit size are primarily a function of cell number

出版社

AMER SOC HORTICULTURAL SCIENCE
DOI: 10.21273/JASHS.132.5.697

关键词

cell length; Prunus avium

向作者/读者索取更多资源

Understanding the genetic control of fruit size in sweet cherry (Prunus avium L.) is critical for maximizing fruit size and profitable fresh market production. In cherry, coordinated cycles of cell division and expansion of the carpel result in a fleshy mesocarp that adheres to a stony endocarp. How these structural changes are influenced by differing genetics and environments to result in differing fruit sizes is not known. Thus, the authors measured mesocarp cell length and cell number as components of fruit size. To determine the relative genotypic contribution, five sweet cherry cultivars ranging from approximate to 1 to 13 g fresh weight were evaluated. To determine the relative environmental contribution to fruit size, different-size fruit within the same genotype and from the same genotype grown in different environments were evaluated. Mesocarp cell number was the major contributor to the differences in fruit equatorial diameter among the five sweet cherry cultivars. The cultivars fell into three significantly different cell number classes: approximate to 28 cells, approximate to 45 cells, and approximate to 78 cells per radial mesocarp section. Furthermore, mesocarp cell number was remarkably stable and virtually unaffected by the environment as neither growing location nor physiological factors that reduced final fruit size significantly altered the cell numbers. Cell length was also significantly different among the cultivars, but failed to contribute to the overall difference in fruit size. Cell length was significantly influenced by the environment, indicating that cultural practices that maximize mesocarp cell size should be used to achieve a cultivar's fruit size potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据