4.4 Article

Recent advancements in magnetoelectric particulate and laminate composites

期刊

JOURNAL OF ELECTROCERAMICS
卷 19, 期 1, 页码 149-166

出版社

SPRINGER
DOI: 10.1007/s10832-007-9042-5

关键词

magentoelectric; ferroelectric; magnetostrictive; piezoelectric; sensor; energy harvesting; phase shifter; transformer

向作者/读者索取更多资源

Recently, the magnetoelectric (ME) effect-dielectric polarization of a material under magnetic field, or induced magnetization under an electric field-has become the focus of significant research interests. The primary requirement for the observance of said effect is the coexistence of magnetic and electric dipoles. Most of the known single phase materials suffer from the drawback that the ME effect is quite small, even at low temperatures limiting their applicability in practical devices. Better alternatives are ME composites, which have large magnitudes of the ME voltage coefficient. Composites exploit the product property of materials; where the ME effect is realized by combining magnetostrictive and piezoelectric phases that independently are not ME, but acting together (i.e., their product) result in a ME effect. In this review article, we survey recently reported results concerning ME composites, focusing on ME particulate (synthesized via a controlled precipitation technique) and laminated composites. The article also provides a survey of the compositions and magnitudes of the ME coefficients reported in the literature; a brief description of the analytical models developed to explain and predict the behavior of composites; and discuss several applications that are made possible by enhanced ME effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据