4.6 Article

Gold nanoparticles-based fluorescence resonance energy transfer for competitive immunoassay of biomolecules

期刊

ANALYST
卷 137, 期 24, 页码 5885-5890

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2an36108f

关键词

-

资金

  1. National Natural Science Foundations of China [21175030]
  2. Natural Science Foundations of Guangxi Province [2010GXNSFF013001]

向作者/读者索取更多资源

A novel platform for competitive immunoassay of biomolecules was designed based on fluorescence resonance energy transfer (FRET) between fluorescein isothiocyanate (FITC) and gold nanoparticles (AuNPs). The antigen was first labeled with FITC, and the FITC labeled antigen was then reacted with AuNPs functionalized with a relative antibody to obtain the nanometer-sized sensor. The FRET between FITC and AuNPs led to the fluorescent quenching of FITC. Upon the recognition of the target antigen, the FICT labeled antigen was released from the AuNPs surface because of competitive immunoreaction, the distance between the FITC and AuNPs increased, and the interaction between FITC and AuNPs became weaker, which significantly hindered the FRET and, thus, increased the fluorescence of FITC. The change in fluorescence intensity produced a novel method for detection of the target. By using immunoglobulin M (IgM) as a model analyte, the competitive immunoassay had a limit of detection of 42 pM. The present method was applied for the determination of IgM in human serum with satisfactory results. The proposed method exhibits several advantages such as high quenching efficiency and sensitivity, and good specificity toward target versus other analogues. Moreover, this strategy could be conveniently extended for the detection of other biomolecules by using the corresponding antigens and respective antibodies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据