4.6 Article

Exploratory urinary metabolic biomarkers and pathways using UPLC-Q-TOF-HDMS coupled with pattern recognition approach

期刊

ANALYST
卷 137, 期 18, 页码 4200-4208

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2an35780a

关键词

-

资金

  1. Key Program of Natural Science Foundation of State [90709019]
  2. National Specific Program on the Subject of Public Welfare [200807014]
  3. National Key Subject of Drug Innovation [2009ZX09502-005]
  4. National Program on Key Basic Research Project of China [2005CB523406]

向作者/读者索取更多资源

Metabolomics represents an emerging and powerful discipline concerned with the comprehensive analysis of small molecules and provides a powerful approach to discover biomarkers in biological systems. Recent development of biomarkers for diagnosis and therapeutic monitoring of liver-stagnation and spleen-deficiency syndrome (LSS)-type disease remains challenging. This study was undertaken to discover novel potential biomarkers for the non-invasive early diagnosis of human LSS. Urine samples which are potentially a rich source of metabolites were collected from patients with LSS, together with healthy control samples. Metabolite profiling was performed by ultra-performance liquid-chromatography/electrospray-ionization synapt high-definition mass spectrometry (UPLC-Q-TOF-HDMS) in conjunction with multivariate data analysis and ingenuity pathway analysis that were used to select the metabolites to be used for the non-invasive diagnosis of LSS. Twelve urinary differential metabolites contributing to the complete separation of LSS patients from matched healthy controls were identified involving several key metabolic pathways such as pentose and glucuronate interconversions, ascorbate, aldarate, cysteine, methionine, tyrosine, tryptophan, amino sugar and nucleotide sugar metabolism. More importantly, of the 12 differential metabolites, 4 metabolite markers, prolylhydroxyproline, L-homocystine, 2-octenoylcarnitine and alpha-N-phenylacetyl-L-glutamine, were effective for the diagnosis of human LSS, with an achieved sensitivity of 93.0%. These results demonstrate that robust metabolomics has the potential as a non-invasive strategy and promising screening tool to evaluate the potential of these metabolites in the early diagnosis of LSS patients and provides new insight into pathophysiological mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据