4.8 Article

Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis

期刊

ANALYTICAL CHEMISTRY
卷 79, 期 17, 页码 6599-6606

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac070736f

关键词

-

向作者/读者索取更多资源

A 150 mu m internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N '-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 mu L/min with a back pressure of similar to 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 mu g of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54 780 peptides) at the false positive rate only 0.46%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据