4.6 Article

Zirconium arsenate-modified magnetic nanoparticles: preparation, characterization and application to the enrichment of phosphopeptides

期刊

ANALYST
卷 137, 期 4, 页码 959-967

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2an15985f

关键词

-

资金

  1. National Natural Science Foundation of China [91017013, 31070327]
  2. Science Fund for Creative Research Groups [20921062]
  3. NSFC
  4. National 973 project of China [2007CB914200]
  5. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Phosphorylation, one of the most important post-translational modifications of protein, plays a crucial role in a large number of biological processes. Large-scale identification of protein phosphorylation by mass spectrometry is still a challenging task because of the low abundance of phosphopeptides and sub-stoichiometry of phosphorylation. In this work, a novel strategy based on the specific affinity of zirconium arsenate to the phosphate group has been developed for the effective enrichment of phosphopeptides. Zirconium arsenate-modified magnetic nanoparticles (ZrAs-Fe3O4@SiO2) were prepared by covalent immobilization of zirconium arsenate on Fe3O4@SiO2 magnetic nanoparticles under mild conditions, and characterized by transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). The prepared ZrAs-Fe3O4@SiO2 was applied for the selective enrichment of phosphopeptides from the digestion mixture of phosphoproteins and bovine serum albumin (BSA). Our results demonstrated that the ZrAs-Fe3O4@SiO2 magnetic nanoparticles possess higher selectivity for phosphopeptides and better capture capability towards multiply-phosphorylated peptides than commercial zirconium dioxide (ZrO2), which has been widely employed for the enrichment of phosphopeptides. In addition, endogenous phosphopeptides from human serum can be effectively captured by ZrAs-Fe3O4@SiO2 magnetic nanoparticles. It is the first report, to the best of our knowledge, in which the zirconium arsenate-modified magnetic nanoparticles were successfully applied to the enrichment of phosphopeptides, which offers the potential application of this new material in phosphoproteomics study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据