4.6 Article

X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser

期刊

PHYSICAL REVIEW A
卷 76, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.76.033416

关键词

-

向作者/读者索取更多资源

In contrast to the long-wavelength regime, x-ray nonlinear optical processes are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the x rays generated by a self-amplified spontaneous emission free-electron laser as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. It is demonstrated that double-core-hole formation via x-ray two-photon absorption is enhanced by chaotic photon statistics. Numerical calculations using rate equations illustrate the impact of field chaoticity on x-ray nonlinear ionization of helium and neon for photon energies near 1 keV. In the case of neon, processes are discussed that involve up to seven photons. Assuming an x-ray coherence time of 2.6 fs, double-core-hole formation in neon is found to be statistically enhanced by about 30% at an intensity of 10(16) W/cm(2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据