4.8 Article

Symmetry of large physical systems implies independence of subsystems

期刊

NATURE PHYSICS
卷 3, 期 9, 页码 645-649

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys684

关键词

-

向作者/读者索取更多资源

Composite systems consisting of a large number of similar subsystems play an important role in many areas of physics as well as in information theory. Their analysis, however, often relies on the assumption that the subsystems are mutually independent (or only weakly correlated). Here, we show that this assumption is generally justified for quantum systems that are symmetric, that is, invariant under permutations of the subsystems. Because symmetry is often implied by natural properties, for example, the indistinguishability of identical particles, the result has a wide range of consequences. In particular, it implies that global properties of a large composite system can be estimated by measurements applied to a limited number of (randomly chosen) sample subsystems, a fact that is important for the interpretation of experimental data. Moreover, it generalizes statements in quantum information theory and cryptography, which previously have only been known to hold under certain independence assumptions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据