4.4 Article

Characterization and role of fucose mutarotase in mammalian cells

期刊

GLYCOBIOLOGY
卷 17, 期 9, 页码 955-962

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cwm066

关键词

fucose; fucose incorporation; HPLC; mutarotase; NMR

向作者/读者索取更多资源

L-Fucose for mammalian glycosylation contains an anomeric carbon atom generating alpha- and beta-L-fucoses. Based on sequence comparison of mouse and human homologs with the prokaryotic fucose mutarotases (FucU) characterized previously, we investigated their function in mammalian cells. By nuclear magnetic resonance (NMR) measurement with saturation difference analysis, the purified mammalian mutarotases were demonstrated to be involved in an interconversion between the two anomeric forms with comparable efficiency as that of the Escherichia coli FucU. The mouse gene was widely expressed in various tissues and cell lines, including kidney, liver, and pancreas, although expression was marginal in muscle and testis. By generating stably expressed cell lines for mutarotase genes in HepG2, it was shown that fucose incorporations into cellular proteins were increased as demonstrated by an incorporation of radiolabeled fucose into the cells. Furthermore, intracellular levels of GDP-L-fucose, measured with high performance liquid chromatography (HPLC), were enhanced by an overproduction of cellular mutarotase, which was reversed by gene silencing of mutarotase based on RNA interference. The results suggest that the mammalian mutarotase is functional in facilitated incorporation of fucose through the salvage pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据