4.4 Article

Mechanical properties of WS2 nanotubes

期刊

JOURNAL OF CLUSTER SCIENCE
卷 18, 期 3, 页码 549-563

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10876-007-0118-9

关键词

nanotubes; nanomechanics; AFM; SEM

向作者/读者索取更多资源

Their mesoscopic dimensions (including a nanometer scale diameter and a micrometer scale length) make nanotubes a unique and attractive object of study, including the study of their mechanical properties and fracture in particular. The investigation of the mechanical properties of individual WS2 nanotubes is a challenging task due to their small size. Hence, various microscopy based techniques were used to overcome this challenge. The Young's modulus was studied by techniques like atomic force microscope (AFM) and scanning electron microscope (SEM); it was also calculated by using the density-functional-based tight-binding (DFTB) method. Tensile tests and bending tests of individual WS2 nanotubes were performed as well. Furthermore, the shock wave resistance of these nanotubes was tested. The Young's modulus of WS2 nanotubes was found to be in the range of 150-170 GPa, which is in good agreement with DFTB calculations. WS2 nanotubes also showed tensile strength as high as 16 GPa and fracture strain of 14%. These results indicate the high quality of these nanotubes which reach their theoretical strength. The interlayer shear (sliding) modulus was found to be ca. 2 GPa, this value is in good agreement with DFTB calculations. Moreover, the nanotubes were able to withstand shock waves as high as 21 GPa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据