4.6 Article

Multi-scan single shot quantitative 2D NMR: a valuable alternative to fast conventional quantitative 2D NMR

期刊

ANALYST
卷 136, 期 15, 页码 3157-3163

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1an15278e

关键词

-

资金

  1. Agence Nationale de la Recherche (ANR) [2010-JCJC-0804-01]

向作者/读者索取更多资源

Quantitative Ultrafast (UF) 2D NMR is a very promising methodology enabling the acquisition of 2D spectra in a single scan. The analytical performances of UF 2D NMR have been highly increased in the last few years, however little is known about the sensitivity of ultrafast experiments versus conventional 2D NMR. A fair and relevant comparison has to consider the Signal-to-Noise Ratio (SNR) per unit of time, in order to answer the following question: for a given experiment time, should we run a conventional 2D experiment or is it preferable to accumulate ultrafast acquisitions? To answer this question, we perform here a systematic comparison between accumulated ultrafast experiments and conventional ones, for different experiment durations. Sensitivity issues and other analytical aspects are discussed for the COSY experiment in the context of quantitative analysis. The comparison is first carried out on a model sample, and then extended to model metabolic mixtures. The results highlight the high analytical performance of the multi-scan single shot approach versus conventional 2D NMR acquisitions. This result is attributed to the absence of t(1) noise in spatially encoded experiments. The multi-scan single shot approach is particularly interesting for quantitative applications of 2D NMR, whose occurrence in the literature has been greatly increasing in the last few years.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据