4.6 Article

Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging

期刊

ANALYST
卷 136, 期 14, 页码 2953-2958

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1an15112f

关键词

-

资金

  1. Susan G. Komen for the Cure [KG081426]
  2. National Institutes of Health [RO1CA138882]
  3. NATIONAL CANCER INSTITUTE [R01CA138882] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The tumor microenvironment, or stroma, is chemically and morphologically modified during carcinoma progression. The predominant cell type in the stroma, the fibroblast, maintains collagen properties in normal tissue and often transformed during tumor progression. Biochemical changes within fibroblasts upon initial cancer activation, however, are relatively poorly defined. Here, we hypothesized that Fourier transform infrared (FT-IR) spectroscopic imaging could potentially be employed to examine these early transformations. Further, we employ attenuated total reflectance (ATR) microscopy to characterize subcellular spectra and their changes upon transformation. We characterized fibroblast transitions upon stimulation with both a molecular agent and a carcinoma-mimicking cellular co-culture system. Changes were predominantly observed in the 1080 cm(-1) and 1224 cm(-1) peak absorbance, commonly associated with nucleic acids, as well as in the band at 2930 cm(-1) associated with the C-H stretching of proteins in the cytoplasmic compartment. In conclusion, biochemical changes in cancer-associated fibroblasts that express alpha-SMA are dominated by the cytoplasm, rather than the nucleus. This ensures that spectral changes are not associated with proliferation or cell cycle processes of the cells and the cells are undergoing a true phenotypic change denoted by protein modifications in the cell body.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据