4.2 Article

Neurorescue activity, APP regulation and amyloid-β peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, m-30 and green tea polyphenol, EGCG

期刊

CURRENT ALZHEIMER RESEARCH
卷 4, 期 4, 页码 403-411

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/156720507781788927

关键词

Alzheimer's disease; Parkinson's disease; iron; monoamine oxidase; brain permeable iron chelators; neuroprotection; neurorescue; APP; A beta- peptide; iron regulatory protein; iron responsive element

向作者/读者索取更多资源

Accumulation of iron at sites where neurons degenerate in Parkinson's disease (PD) and Alzheimer's disease (AD) is thought to have a major role in oxidative stress induced process of neurodegeneration. The novel non-toxic lipophilic bram-permeable iron chelators, VK-28 (5- [4- (2- hydroxyethyl) piperazine- 1- ylmethyl]- quinoline- 8- ol) and its multi-functional derivative, M-30 (5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline), as well as the main polyphenol constituent of green tea (-)-epigallocatechin-3-gal late (EGCG), which possesses iron metal chelating, radical scavenging and neuroprotective properties, offer potential therapeutic benefits for these diseases. M-30 and EGCG decreased apoptosis of human SH-SY5Y neuroblastoma cells in a neurorescue, serum deprivation model, via multiple protection mechanisms including: reduction of the pro-apoptotic proteins, Bad and Bax, reduction of apoptosis-associated Ser139 phosphorylated H2A.X and inhibition of the cleavage and activation of caspase-3. M-30 and EGCG also promoted morphological changes, resulting in axonal growth-associated protein-43 (GAP-43) implicating neuronal differentiation. Both compounds significantly reduced the levels of cellular holo-amyloid precursor protein (APP) in SH-SY5Y cells. The ability of theses novel iron chelators and EGCG to regulate APP are in line with the presence of an iron-responsive element (IRE) in the 5'-untranslated region (5'UTR) of APP. Also, EGCG reduced the levels of toxic amyloid-beta peptides in CHO cells over-expressing the APP Swedish mutation. The diverse molecular mechanisms and cell signaling pathways participating in the neuroprotective/neurorescue and APP regulation/processing actions of M-30 and EGCG, make these multifunctional compounds potential neuroprotective drugs for the treatment of neuro degenerative diseases, such as PD, AD, Huntington's disease and amyotrophic lateral sclerosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据