4.7 Article

The aspartate aminotransferase family in conifers:: biochemical analysis of a prokaryotic-type enzyme from maritime pine

期刊

TREE PHYSIOLOGY
卷 27, 期 9, 页码 1283-1291

出版社

HERON PUBLISHING
DOI: 10.1093/treephys/27.9.1283

关键词

amino acids; aspartate metabolism; nitrogen assimilation; peptide fingerprinting; recombinant expression

类别

向作者/读者索取更多资源

Plant aspartate aminotransferase (AAT, EC 2.6.1.1) plays a key role in primary nitrogen assimilation, the transfer of reducing equivalents and the interchanges of carbon and nitrogen pools between subcellular compartments. We investigated the AAT family in conifers using maritime pine as the experimental model. Genes for cytosolic, mitochondrial and two plastidic isoenzymes (eukaryotic- and prokaryotic-types) were identified and their deduced amino acid sequences compared. The primary structure of the eukaryotic-type enzymes is quite well conserved, whereas the prokaryotic-type AAT is highly divergent (15% of identity). These molecular data were confirmed by the absence of immunological cross-reactivity between the two types of native AATs. The mature prokaryotic-type polypeptide was overexpressed in Escherichia coli, and the native enzyme was purified to apparent homogeneity and its molecular properties determined. The fully active recombinant holoenzyme showed highest catalytic activity at 50-60 degrees C and was moderately thermostable, retaining about 50% of its activity after incubation at 70 degrees C for 5-10 min. The presence of pyridoxal 5'-phosphate significantly increased the thermostability of the enzyme. These molecular characteristics were exploited to develop a rapid protocol for the purification of this prokaryotic-type enzyme from pine cotyledons. The results will be useful for Studying aspartate and amino acid metabolism in trees.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据