4.7 Article

Two-dimensional granular slumps down slopes

期刊

PHYSICS OF FLUIDS
卷 19, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2762254

关键词

-

向作者/读者索取更多资源

The slumping and subsequent arrest of initially motionless granular materials from behind a rapidly removed lockgate in a sloping two-dimensional channel is considered theoretically and experimentally. The theory is based upon a shallow layer description of the flow and arrest of the grains in which resistance to the downslope motion is modelled as a Coulomb drag with a constant coefficient of friction. The flows leave a thin layer of deposited material along the chute and the depth of the deposit at the rear of the lock is predicted from the theoretical model using asymptotic techniques. This analysis explains the dependence on the initial aspect ratio of the release that has been seen in previous numerical and experimental studies of granular slumps over horizontal surfaces. The theoretical predictions of this depth are also compared with laboratory observations of the slumping of four dry granular materials. It is shown that there is quantitative agreement between the experimental measurements and the theoretical predictions, which include no fitting parameters. The theoretical predictions for the length along the chute that the materials slump, however, are not in agreement with the theoretical model and potential reasons for this mismatch are discussed. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据