4.5 Article

6-Methylprednisolone down-regulates IRAK-M in human and murine osteoclasts and boosts bone-resorbing activity:: a putative mechanism for corticoid-induced osteoporosis

期刊

JOURNAL OF LEUKOCYTE BIOLOGY
卷 82, 期 3, 页码 700-709

出版社

WILEY
DOI: 10.1189/jlb.1106673

关键词

glucocorticoids; TLR; IL-1R

向作者/读者索取更多资源

Osteoclasts are large, multinucleated cells, which originate from the fusion of macrophages. They play a central role in bone development and remodeling via the resorption of bone and are thus important mediators of bone loss, which leads to osteoporosis. IL-1R-associated kinase (IRAK)-M is a pseudokinase, which acts as a negative modulator of innate immune responses mediated by TLRs and IL-1R. Recently, it has been reported that IRAK-M also participates in the control of macrophage differentiation into osteoclasts. In addition, it was shown that IRAK-M knockout mice develop a strong osteoporosis phenotype, suggesting that down-regulation of this molecule activates osteoclast-mediated bone resorption. We studied the effect of the osteoporosis-inducing glucocorticoid, 6-methylprednisolone (6-MP), on IRAK-M expression in osteoclasts. Our results showed that osteoclasts, derived from THP-1 and RAW cells as well as human blood monocytes, differentiated into osteoclasts, express high levels of IRAK-M at mRNA and protein levels. In addition, 6-MP down-regulates IRAK-M expression, which correlates with an increased activation of bone resorption. These findings suggest a mechanism of corticosteroid-induced osteoporosis and open new avenues for treating this endemic disease of Western societies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据