4.4 Article

Golgi manganese transport is required for rapamycin signaling in Saccharomyces cerevisiae

期刊

GENETICS
卷 177, 期 1, 页码 231-238

出版社

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.107.073577

关键词

-

资金

  1. NIGMS NIH HHS [GM40334, R01 GM062890, R01 GM040334, GM62890] Funding Source: Medline

向作者/读者索取更多资源

The Pmrl Golgi Ca2+/Mn2+ ATPase negatively regulates target of rapamycin complex (TORC1) signaling, the rapamycin-sensitive TOR complex in Saccharomyces cerevisiae. Since pmr1 causes resistance to rapamycin and tor1 causes hypersensitivity, we looked for genetic interactions of pmr1 with tor1. Deletion of TOR1 restored two wild-type phenotypes. Loss of TOR1 restored the ability of the pmr1 strain to grow on media containing 2 mm MnCl2 and conferred wild type as well as the wild-type sensitivity to rapamycin. Mn2+ additions to media partially suppressed rapamycin resistance of wild type and pmr1 tor1, suggesting that Tor1 and Tor2 are regulated by manganese. We parsed the roles of Ca2+ and Mn2+ transport and the compartments in rapamycin response using separation-of-function mutants available for Pmr1 A strain containing the D53A mutant (Mn2+ transporting) of Pmrl is rapamycin sensitive, but the Q783A mutant (Ca2+ transporting) strain is rapamycin resistant. Mn2+ transport into the Golgi lumen appears to be required for rapamycin sensitivity. Overexpression of Ca2+ pump SERCA1, Ca2+/H+ antiporter Vcx1, or a Mn2+ transporting mutant of Vcx1 (Vcx1-M1) failed to restore rapamycin sensitivity, and loss of Pmrl but not other transporters of Ca2+ or Mn2+ results in rapamycin resistance. Overexpression of Ccc1, a Fe2+ and Mn2+ transporter that has been localized to Golgi and the vacuole, does restore rapamycin sensitivity to pmr1 Delta. We conclude that Mn2+ in the Golgi inhibits TORC1 signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据