4.6 Article Proceedings Paper

Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media

期刊

ANALYST
卷 134, 期 6, 页码 1192-1197

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b821437a

关键词

-

向作者/读者索取更多资源

A spectroscopic depth profiling approach is demonstrated for layers of non-transparent, diffusely scattering materials. The technique is based on the temporal discrimination between Raman photons emitted from the surface and Raman photons originating from a deeper layer. Excitation was carried out with a frequency-doubled, 3 ps Ti:sapphire laser system (398 nm; 76 MHz repetition rate). Time-resolved detection was carried out with an intensified CCD camera that can be gated with a 250 ps gate width. The performance of the system was assessed using 1 mm and 2 mm pathlength cuvettes with powdered PMMA and trans-stilbene (TS) crystals, respectively, or solid white polymer blocks: Arnite (polyethylene terephthalate), Delrin (polyoxymethylene), polythene (polyethylene) and Teflon (polytetrafluoroethylene). These samples were pressed together in different configurations and Raman photons were collected in backscatter mode in order to study the time difference in such media corresponding with several mm of extra net photon migration distance. We also studied the lateral contrast between two different second layers. The results demonstrate that by means of a picosecond laser system and the time discrimination of a gated intensified CCD camera, molecular spectroscopic information can be obtained through a turbid surface layer. In the case of the PMMA/TS two-layer system, time-resolved detection with a 400 ps delay improved the relative intensity of the Raman bands of the second layer with a factor of 124 in comparison with the spectrum recorded with a 100 ps delay (which is more selective for the first layer) and with a factor of 14 in comparison with a non-gated setup. Possible applications will be discussed, as well as advantages/disadvantages over other Raman techniques for diffusely scattering media.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据