4.5 Article Proceedings Paper

Metal-insulator transition in correlated systems:: A new numerical approach

期刊

PHYSICA B-CONDENSED MATTER
卷 398, 期 2, 页码 407-411

出版社

ELSEVIER
DOI: 10.1016/j.physb.2007.04.049

关键词

Mott transition; dynamical mean field theory; density matrix renormalization group

向作者/读者索取更多资源

We study the Mott transition in the Hubbard model within the dynamical mean field theory approach where the density matrix renormalization group method is used to solve its self-consistent equations. The DMRG technique solves the associated impurity problem. We obtain accurate estimates of the critical values of the metal-insulator transitions. For the Hubbard model away from the particle-hole symmetric case we focus our study on the region of strong interactions and finite doping where two solutions coexist. In this region we demonstrate the capabilities of this method by obtaining the frequency-dependent optical conductivity spectra. With this algorithm, more complex models having a larger number of degrees of freedom can be considered and finite-size effects can be minimized. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据