4.6 Article

Electron mobility enhancement in strained-germanium n-channel metal-oxide-semiconductor field-effect transistors

期刊

APPLIED PHYSICS LETTERS
卷 91, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2779845

关键词

-

向作者/读者索取更多资源

The dependence of electron mobility on strain, channel direction, and substrate orientation is theoretically studied for the germanium n-channel metal-oxide-semiconductor field-effect transistors. For the unstrained channel, (111) substrate can provide the highest mobility among the three orientations, mainly due to its largest quantization mass and smallest conductivity mass in L valley. The tensile strain parallel to the [(1) over bar 10] channel direction on (111) substrate gives 4.1 times mobility of Si at 1 MV/cm, and the mobility enhancement starts to saturate for the strain larger than 0.5%. The compressive strain of similar to 1.5% transverse to [(1) over bar 10] on (111) substrate yields 2.9 times mobility enhancement at 1 MV/cm. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据