4.4 Article

Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli

期刊

BIOCHEMISTRY
卷 46, 期 35, 页码 10113-10121

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi700777x

关键词

-

向作者/读者索取更多资源

Penicillin-binding proteins (PBPs) and beta-lactamases are members of large families of bacterial enzymes. These enzymes undergo acylation at a serine residue with their respective substrates as the first step in their catalytic events. Penicillin-binding protein 5 (PBP 5) of Escherichia coli is known to perform a DD-carboxypeptidase reaction on the bacterial peptidoglycan, the major constituent of the cell wall. The roles of the active site residues Lys47 and Lys213 in the catalytic machinery of PBP 5 have been explored. By a sequence of site-directed mutagenesis and chemical modification, we individually introduced gamma-thialysine at each of these positions. The pH dependence of k(cat)/K-m and of k(cat) for the wild-type PBP 5 and for the two gamma-thialysine mutant variants at positions 47 and 213 were evaluated. The pH optimum for the enzyme was at 9.5-10.5. The ascending limb to the pH optimum is due to Lys47; hence, this residue exists in the free-base form for catalysis. The descending limb from the pH optimum is contributed to by both Lys213 and a water molecule coordinated to Lys47. These results have been interpreted as Lys47 playing a key role in proton-transfer events in the course of catalysis during both the acylation and deacylation events. However, the findings for Lys213 argue for a protonated state at the pH optimum. Lys213 serves as an electrostatic anchor for the substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据