4.8 Article

Dynamics around solutes and solute-solvent complexes in mixed solvents

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0701710104

关键词

preferential solvation; solute-solvent dynamics; ultrafast infrared

向作者/读者索取更多资源

Ultrafast 2D-IR vibrational echo experiments, IR pump-probe experiments, and FT-IR spectroscopy of the hydroxyl stretch of phenol-OD in three solvents, CCl4, mesitylene (1, 3, 5 trimethylbenzene), and the mixed solvent of mesitylene and CCl4 (0.83 mole fraction CCl4), are used to study solute-solvent dynamics via observation of spectral diffusion. Phenol forms a complex with Mesitylene. In the mesitylene solution, there is only complexed phenol; in the CCl4 solution, there is only uncomplexed phenol; and in the mixed solvent, both phenol species are present. Dynamics of the free phenol in CCl4 or the mixed solvent are very similar, and dynamics of the complex in mesitylene and in the mixed solvent are very similar. However, there are differences in the slowest time scale dynamics between the pure solvents and the mixed solvents. The mixed solvent produces slower dynamics that are attributed to first solvent shell solvent composition variations. The composition variations require a longer time to randomize than is required in the pure solvents, where only density variations occur. The experimental results and recent MD simulations indicate that the solvent structure around the solute may be different from the mixed solvent's mole fraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据