4.7 Article

Aldo-keto reductases (AKR) from the AKR1C subfamily catalyze the carbonyl reduction of the novel anticancer drug oracin in man

期刊

TOXICOLOGY
卷 238, 期 2-3, 页码 111-118

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2007.05.021

关键词

aldo-keto reductases (AKR); drug metabolism; biotransformation; carbonyl reduction; stereospecificity; chemotherapeutics; oracin

向作者/读者索取更多资源

In many cases, cancer chemotherapy still obtains unsatisfactory response rates, rare complete remissions and responses of relatively short duration. Therefore, more effective drugs with new structures against cancer are continuously sought. Oracin, 6-[2(2-hydroxyethyl)-aminoethyl]-5,11-dioxo-5,6-dihydro-11H-indeno[1,2-c]isoquinoline, is a new anticancer drug which is presently in phase 11 clinical trials. Pharmacokinetic studies have revealed that oracin undergoes metabolic inactivation by carbonyl reduction. Since metabolic inactivation contributes to chemotherapy resistance, detailed knowledge about the participating enzymes is necessary. In the present study, we identified three members of the aldo-keto reductase (AKR) superfamily to mediate oracin carbonyl reduction in man. For AKR1C1, 1C2 and 1C4, purified from human liver cytosol, we could determine the kinetics and catalytic efficiencies. In addition, we investigated the stereospecificity of formation of reduced oracin (DHO). Whereas AKR1C2 and 1C4 are exclusively (100%) stereospecific for (+)-DHO formation, some 3% of (-)-DHO formation was found for AKR1C1. On the other hand, the activity of AKR1C1 in overall oracin reduction was one order of magnitude higher compared to AKR1C2 and 1C4. Detailed knowledge about all enzymes involved in oracin detoxification may help to improve an anticancer regimen by co-application of respective inhibitors. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据