4.6 Article

An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes

期刊

ANALYST
卷 133, 期 11, 页码 1599-1604

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b806302h

关键词

-

资金

  1. Ministry of Education, Science and Technology (MEST) [2005-01333)]
  2. Korea Health Industry Development Institute [A020605]

向作者/读者索取更多资源

Redox cycling of enzymatically amplified electroactive species has been widely employed for high signal amplification in electrochemical biosensors. However, gold (Au) electrodes are not generally suitable for redox cycling using a reducing (or oxidizing) agent because of the high background current caused by the redox reaction of the agent at highly electrocatalytic Au electrodes. Here we report a new redox cycling scheme, using nicotinamide adenine dinucleotide (NADH), which can be applied to Au electrodes. Importantly, p-aminophenol (AP) redox cycling by NADH is achieved in the absence of diaphorase enzyme. The Au electrodes are modified with a mixed self-assembled monolayer of mercaptododecanoic acid and mercaptoundecanol, and a partially ferrocenyl-tethered dendrimer layer. The self-assembled monolayer of long thiol molecules significantly decreases the background current of the modified Au electrodes, and the ferrocene modi. cation facilitates easy oxidation of AP. The low amount of ferrocene on the Au electrodes minimizes ferrocene-mediated oxidation of NADH. In sandwich-type electrochemical immunosensors for mouse immunoglobulin G (IgG), an alkaline phosphatase label converts p-aminophenylphosphate (APP) into electroactive AP. The amplified AP is oxidized to p-quinoneimine (QI) by electrochemically generated ferrocenium ion. NADH reduces QI back to AP, which can be re-oxidized. This redox cycling enables a low detection limit for mouse IgG (1 pg mL(-1)) to be obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据