4.8 Article

Magnetic microposts as an approach to apply forces to living cells

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0611613104

关键词

focal adhesions; magnetic nanowires; mechanotransduction; microfabrication; traction forces

向作者/读者索取更多资源

Cells respond to mechanical forces whether applied externally,or generated internally via the cytoskeleton. To study the cellular response to forces separately, we applied external forces to cells via microfabricated magnetic posts containing cobalt nanowires interspersed among an array of elastomeric posts, which acted as independent sensors to cellular traction forces. A magnetic field induced torque in the nanowires, which deflected the magnetic posts and imparted force to individual adhesions of cells attached to the array. Using this system, we examined the cellular reaction to applied forces and found that applying a step force led to an increase in local focal adhesion size at the site of application but not at nearby nonmagnetic posts. Focal adhesion recruitment was enhanced further when cells were subjected to multiple force actuations within the same time interval. Recording the traction forces in response to such force stimulation revealed two responses: a sudden loss in contractility that occurred within the first minute of stimulation or a gradual decay in contractility over several minutes. For both types of responses, the subcellular distribution of loss in traction forces was not confined to locations near the actuated micropost, nor uniformly across the whole cell, but instead occurred at discrete locations along the cell periphery. Together, these data reveal an important dynamic biological relationship between external and internal forces and demonstrate the utility of this microfabricated system to explore this interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据