4.8 Article

Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries - Role of bone morphogenic protein antagonists in inflammation and atherosclerosis

期刊

CIRCULATION
卷 116, 期 11, 页码 1258-1266

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.106.683227

关键词

atherosclerosis; blood flow; cell adhesion molecules; endothelium; inflammation; shear stress

资金

  1. NHLBI NIH HHS [HL75209, HL70531, U01HL80711] Funding Source: Medline

向作者/读者索取更多资源

Background - Exposure to disturbed flow, including oscillatory shear stress, stimulates endothelial cells (ECs) to produce bone morphogenic protein (BMP) 4, which in turn activates inflammation, a critical atherogenic step. BMP activity is regulated by the level of BMP antagonists. Until now it was not known whether shear also regulates the expression of BMP antagonists and whether they play a role in EC pathophysiology. Methods and Results - BMP antagonists follistatin, noggin, and matrix Gla protein were expressed in cultured bovine and human arterial ECs. Surprisingly, oscillatory shear stress increased expression of the BMP antagonists in ECs, whereas unidirectional laminar shear decreased such expression. Immunohistochemical studies with mouse aortas showed data consistent with in vitro findings: Only ECs in the lesser curvature exposed to disturbed flow, but not those in the greater curvature and straight arterial regions exposed to undisturbed flow, showed coexpression of BMP4 and the BMP antagonists. Similarly, in human coronary arteries, expression of BMP4 and BMP antagonists in ECs positively correlated with the severity of atherosclerosis. Monocyte adhesion induced by oscillatory shear stress was inhibited by knockdown of BMP4 or treatment with recombinant follistatin or noggin, whereas it was increased by knockdown of follistatin and/or noggin. Conclusions - The present results suggest that ECs coexpress BMP antagonists along with BMP4 in an attempt to minimize the inflammatory response by oscillatory shear stress as part of a negative feedback mechanism. The balance between the agonist, BMP4, and its antagonists may play an important role in the overall control of inflammation and atherosclerosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据