4.8 Article

Conformational adaptation and selective adatom capturing of tetrapyridyl-porphyrin molecules on a copper (111) surface

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 129, 期 36, 页码 11279-11285

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja071572n

关键词

-

向作者/读者索取更多资源

We present a combined low-temperature scanning tunneling microscopy and near-edge X-ray adsorption fine structure study on the interaction of tetrapyridyl-porphyrin (TPyP) molecules with a Cu-(111) surface. A novel approach using data from complementary experimental techniques and charge density calculations allows us to determine the adsorption geometry of TPyP on Cu(111). The molecules are centered on bridge sites of the substrate lattice and exhibit a strong deformation involving a saddle-shaped macrocycle distortion as well as considerable rotation and tilting of the meso-substituents. We propose a bonding mechanism based on the pyridyl-surface interaction, which mediates the molecular deformation upon adsorption. Accordingly, a functionalization by pyridyl groups opens up pathways to control the anchoring of large organic molecules on metal surfaces and tune their conformational state. Furthermore, we demonstrate that the affinity of the terminal groups for metal centers permits the selective capture of individual iron atoms at low temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据