4.6 Review

Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 111, 期 36, 页码 8753-8765

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp073685z

关键词

-

向作者/读者索取更多资源

An energy decomposition analysis (EDA) method is proposed to isolate physically relevant components of the total intermolecular interaction energies such as the contribution from interacting frozen monomer densities, the energy lowering due to polarization of the densities, and the further energy lowering due to charge-transfer effects. This method is conceptually similar to existing EDA methods such as Morokuma analysis but includes several important new features. The first is a fully self-consistent treatment of the energy lowering due to polarization, which is evaluated by a self-consistent field calculation in which the molecular orbital coefficients are constrained to be block-diagonal (absolutely localized) in the interacting molecules to prohibit charge transfer. The second new feature is the ability to separate forward and back-donation in the charge-transfer energy term using a perturbative approximation starting from the optimized block-diagonal reference. The newly proposed EDA method is used to understand the fundamental aspects of intermolecular interactions such as the degree of covalency in the hydrogen bonding in water and the contributions of forward and back-donation in synergic bonding in metal complexes. Additionally, it is demonstrated that this method can be used to identify the factors controlling the interaction of the molecular hydrogen with open metal centers in potential hydrogen storage materials and the interaction of methane with rhenium complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据