4.6 Review

First-order transition features of the triangular Ising model with nearest- and next-nearest-neighbor antiferromagnetic interactions

期刊

出版社

ELSEVIER
DOI: 10.1016/j.physa.2007.04.051

关键词

first-order transitions; triangular Ising model-superantiferromagnetism; entropic sampling

向作者/读者索取更多资源

We implement a new and accurate numerical entropic scheme to investigate the first-order transition features of the triangular Ising model with nearest-neighbor (J(nn)) and next-nearest-neighbor (J(nnn)) antiferromagnetic interactions in ratio R = J(nn)/J(nnn) = 1. Important aspects of the existing theories of first-order transitions are briefly reviewed, tested on this model, and compared with previous work on the Potts model. Using lattices with linear sizes L = 30,40,..., 100, 120, 140,160,200, 240, 360 and 480 we estimate the thermal characteristics of the present weak first-order transition. Our results improve the original estimates of Rastelli et al. and verify all the generally accepted predictions of the finite-size scaling theory of first-order transitions, including transition point shifts, thermal, and magnetic anomalies. However, two of our findings are not compatible with current phenomenological expectations. The behavior of transition points, derived from the number-of-phases parameter, is not in accordance with the theoretically conjectured exponentially small shift behavior and the well-known double Gaussian approximation does not correctly describe higher correction terms of the energy cumulants. It is argued that this discrepancy has its origin in the commonly neglected contributions from domain wall corrections. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据