4.6 Article

Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC

期刊

APPLIED PHYSICS LETTERS
卷 91, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2771084

关键词

-

向作者/读者索取更多资源

The authors present a scanning tunneling spectroscopy (STS) study of the local electronic structure of single and bilayer graphene grown epitaxially on a SiC(0001) surface. Low voltage topographic images reveal fine, atomic-scale carbon networks, whereas higher bias images are dominated by emergent spatially inhomogeneous large-scale structure similar to a carbon-rich reconstruction of SiC(0001). STS spectroscopy shows an similar to 100 meV gaplike feature around zero bias for both monolayer and bilayer graphene/SiC, as well as significant spatial inhomogeneity in electronic structure above the gap edge. Nanoscale structure at the SiC/graphene interface is seen to correlate with observed electronic spatial inhomogeneity. These results are relevant for potential devices involving electronic transport or tunneling in graphene/SiC. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据